

COVID-19 Pandemic Tradeoffs: Launch of web-tool

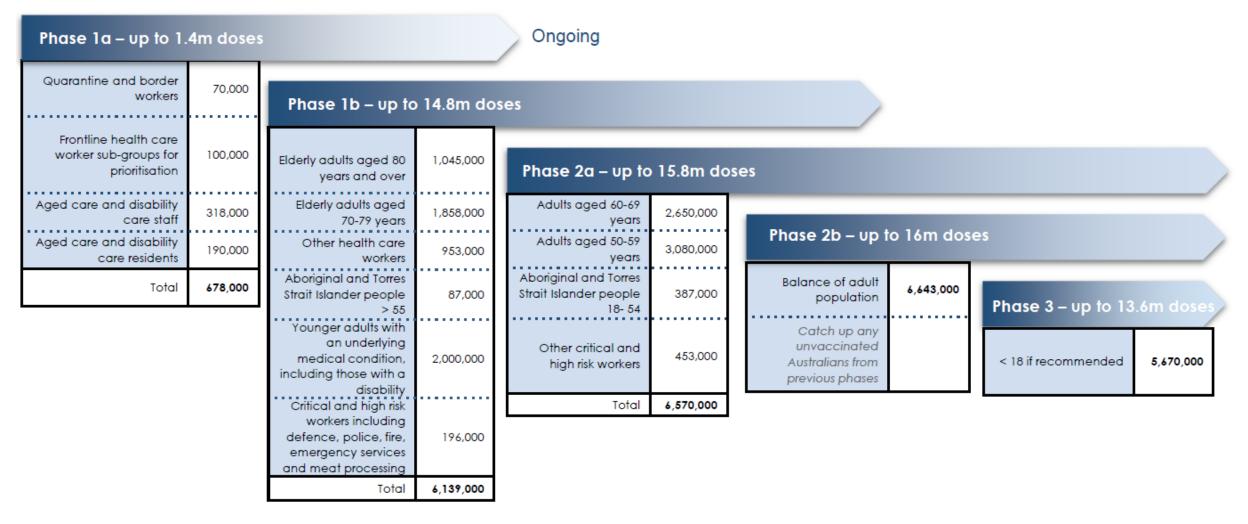
Professor Tony Blakely, Population Interventions Unit, CEB, MSPGH

Dr Tim Wilson, Population Interventions Unit, CEB, MSPGH, University of Melbourne Luke Thorburn, Hunt Lab for Intelligence Research at the University of Melbourne Nathan Grills, Nossal Institute, MSPGH, University of Melbourne

Transport Health Urban Design (THUD) Laboratory team at the Melbourne School of Design:

- Dr Jason Thompson built the original agent-based model (ABM)
- Profs Stevenson and McClure, THUD, contributed to early development of the ABM
- Drs Haifeng Zhao and Sachith Seneviratne (THUD) provided high-speed computing support.

Population interventions team, MSPGH:


- Dr Driss Ait Ouakrim, Ms Ameera Katar and Mr Patrick Abraham undertook the literature review to establish which diseases and conditions are associated with lockdowns
- Drs Laxman Bablani and Patrick Andersen contributed coding and expertise to assist the proportional multistate lifetable modelling
- Dr Natalie Carvalho contributed health economic advice.

- 1. Live look at tool
- 2. Some power point slides of figures taken from tool
- 3. Our interpretation of what matters
- 4. What next?

Reminder – what our Vaccine Rollout looks like

COVID-19 Trade Offs (default settings)

Strategy Relaxation

vaccination progresses.

Whether to relax stage triggers as

Government & Public Response

Vaccine Uptake

Percentage of people who accept vaccination when they are offered it.

75%	~	Off	~
	O DETAILS		() DETAILS

Infectivity

Phase 1 Vaccine Efficacy

Percentage by which the vaccine administered in phase 1 would reduce transmission in a fully vaccinated population.

Phase 2 & 3 Vaccine Efficacy

Percentage by which the vaccine administered in phases 2 and beyond would reduce transmission in a fully vaccinated population.

 \sim

Uptake75%RelaxoffVE (trans)75%R0 =3.125

Unmitigated Reproduction Rate

Average number of people each infected person infects with no interventions, such as masks, physical distancing, case isolation, and vaccination.

3.125

For every scenario you select, we give you outputs for four policy response scenarios

- Aggressive elimination:
 - approximating the intensity of response taken in NZ and Victoria in 2020
- Moderate elimination:
 - approximating the responses by NSW to outbreaks (later to lockdown, earlier out, rely more on contact tracing; but still trying to eliminate)
- Tight suppression:
 - approximating the South Korea approach to keeping numbers low, but not going for elimination
- Loose suppression:
 - approximating Europe before Christmas 2020 'living with the virus'

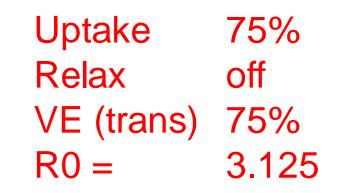
Trigger in average daily cases per million in the last 7 days (or total cases in last 7 days for Victorian population) with trigger thresholds \rightarrow stage 3

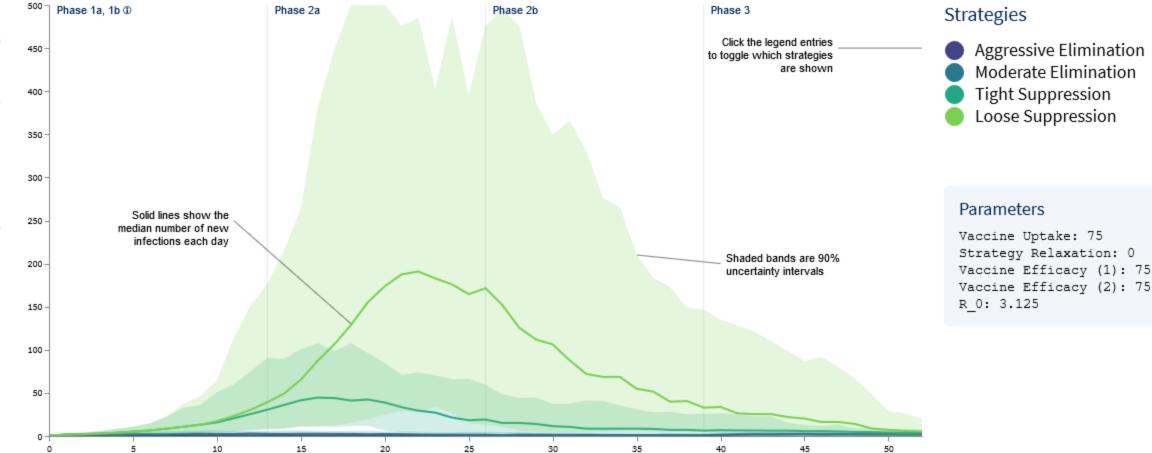
Strategy	Relaxation 'off'	Relaxation 'on'									
	All phases										
Aggressive elimination	0.23 (>10)										
Moderate elimination	0.9 (>42)										
Tight suppression	10 (>460)										
Loose suppression	50 (>2310)										

Trigger in average daily cases per million in the last 7 days (or total cases in last 7 days for Victorian population) with trigger thresholds \rightarrow stage 3

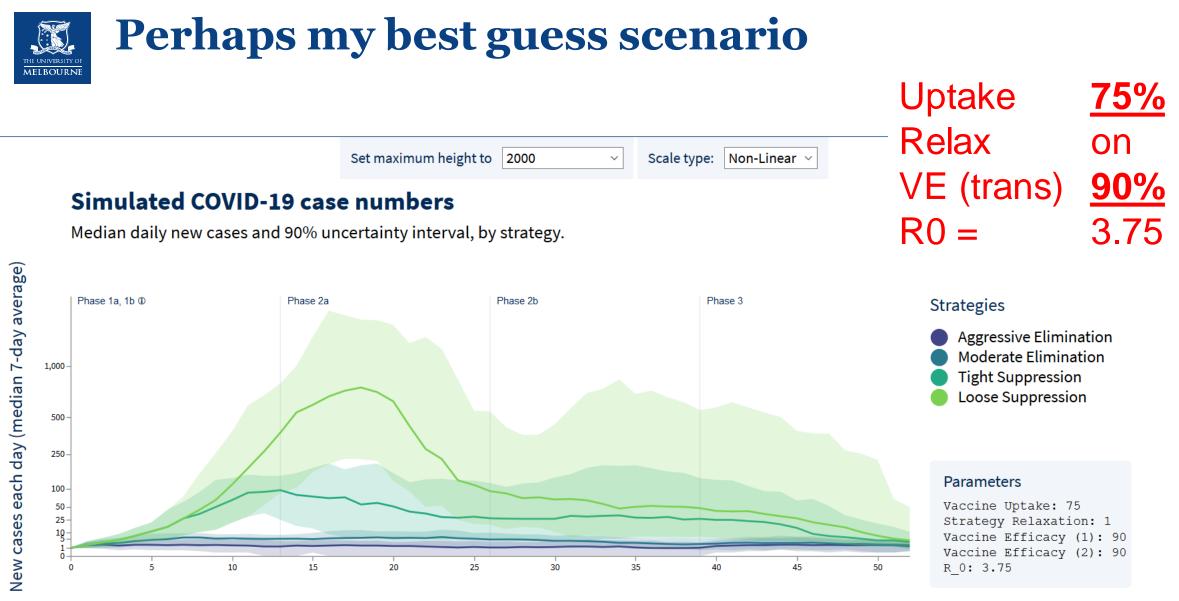
Strategy	Relaxation 'off'	Relaxation 'on'										
	All phases	Phase 1a and 1b (priority, 70+, ATSI 65+)	Phase 2a (50+, ATSI 18+)	Phase 2b (rest adults)	Phase 3 (children)							
Aggressive elimination	0.23 (>10)	0.23 (>10)	0.45 (>20)	0.91 (>40)	1.82 (>80)							
Moderate elimination	0.9 (>42)	0.9 (>42)	1.82 (>84)	3.64 (>168)	7.27 (>336)							
Tight suppression	10 (>460)	10 (>460)	20 (>924)	40 (>1,848)	80 (>3,696)							
Loose suppression	50 (>2310)	50 (>2310)	100 (>4,620)	200 (>9,240)	400 (>18,480)							

Live demonstration of tool

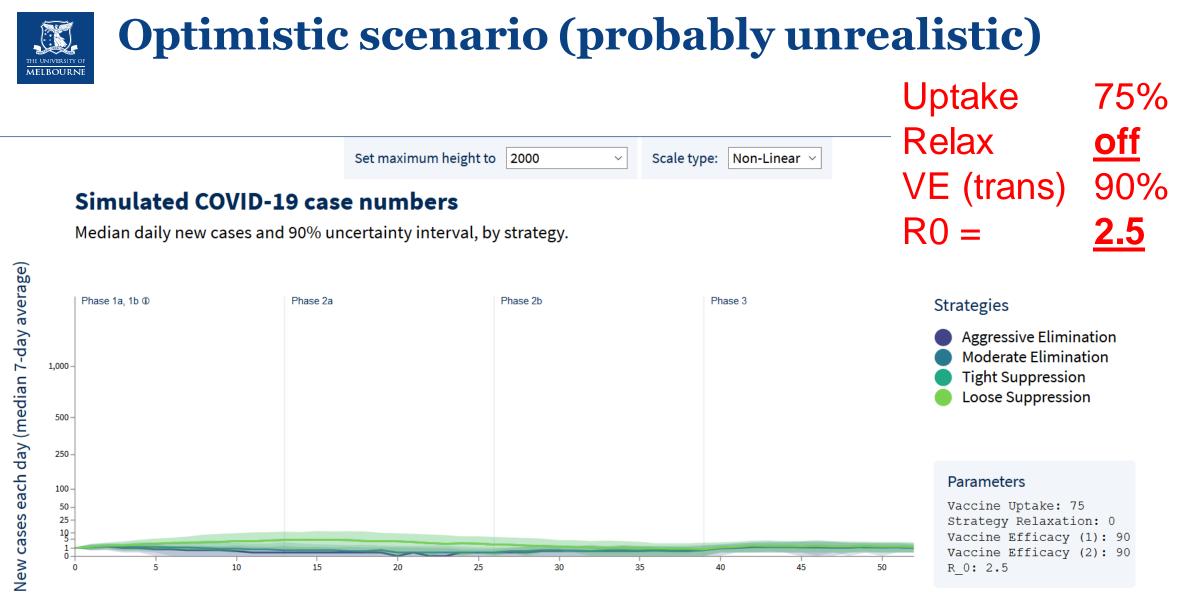

COVID-19 Pandemic Trade-off tool



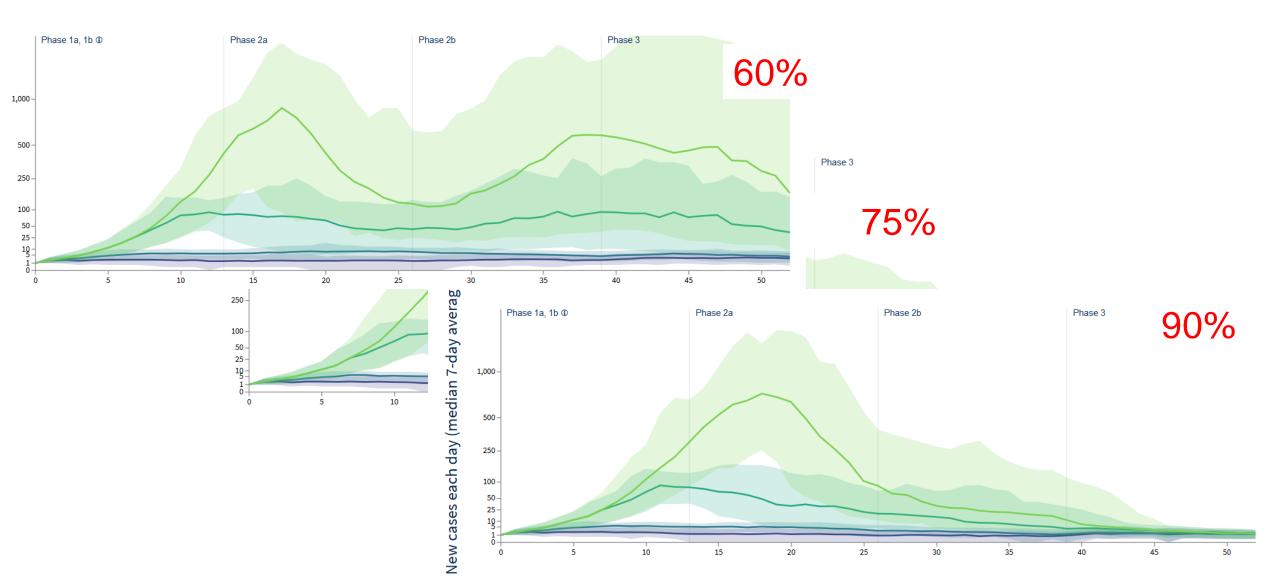
Default when you open tool


Simulated COVID-19 infection numbers

Median daily new infections and 90% uncertainty interval, by strategy.



Weeks since start of simulation


11

Weeks since start of simulation

What about sole effect of vaccine uptake on my best guess scenario? (Relax: on; VE (trans) 90%; Ro = 3.75)

Summarizing 216 scenarios: <u>average weekly</u> <u>number of infections</u> in Phase 2b

				Aggressive elimination		n	Moderate elimination			Tight suppression			Loose supp		
	Transmission reduction	from vaccine		90%	75%	50%	90%	75%	50%	90%	75%	50%	90%	75%	50%
R0=2.5	No strategy relaxation		90%	ő <u> </u>	4	5	3	4	6	5	11	44	5	13	88
		Vaccine coverage	75%	6 3	4	5	4	5	8	9	20	60	10	26	150
			60%	6 4	4	5	4	6	8	17	36	85	25	56	158
	Strategy relaxation		90%	6 3	4	6	3	5	9	5	12	62	5	13	117
		Vaccine coverage	75%	6 3	5	6	4	6	11	9	25	103	10	26	229
			60%	6 4	5	7	6	8	11	20	47	150	42	62	270
DA A 475						-			47	22	74	450	102	170	070
RU=3.175	No strategy relaxation	Vaccine coverage	90%		5	/	5	8	17	32 62	71 98	153	182	479	970
			75% 60%		5	8	6	10 13	19 22	85	132	168 171	399 628	732 763	988 1141
			00%		0	0	9	15		60	152	1/1	020	705	1141
	Strategy relaxation	Vaccine coverage	90%	6 4	6	12	6	11	24	59	212	531	382	1676	3260
			75%	6 5	8	13	9	15	27	138	289	578	998	2773	3355
			60%	6 6	10	16	13	21	38	281	475	735	2443	3127	3542
R03.75	No strategy relaxation		90%	6 5	7	12	10	19	30	43	116	309	166	497	1453
		Vaccine coverage	75%	6 6	8	12	15	23	35	83	199	364	342	799	1568
			60%	6 8	10	13	23	30	37	164	276	365	727	1180	1859
	Strategy valouation		90%		11	24	14	32	90	139	474	1160	442	2273	EDDD
	Strategy relaxation	Vaccine coverage	75%		11	24 27	23	45	110	335	822	1169 1327	1129	3384	5332 6805
		Vaccine coverage	60%		20	27	37	43 64	134	633	1082	1327	3110	4726	7109
			007	13	20	25	57	0-1	134	000	1002	1305	5110	7720	/105

Summarizing 216 scenarios: proportion of time in <u>stage 3 or 4 lockdown</u> in Phase 2b

				Aggressive elimination			Moderat	Moderate elimination			Tight suppression			Loose suppression		
	Transmission reduction	from vaccine		90%	75%	50%	90%	75%	50%	90%	75%	50%	90%	75%	50%	
R0=2.5	2.5 No strategy relaxation		90%	0.09	0.11	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		Vaccine cc	75%	0.08	0.15	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			60%	0.14	0.21	0.33	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	
	Strategy relaxation		90%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		Vaccine co	75%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			60%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
R0=3.175	No strategy relaxation		90%	0.10	0.27	0.37	0.03	0.09	0.21	0.00	0.00	0.04	0.00	0.01	0.11	
		Vaccine cc	75%	0.20	0.32	0.43	0.02	0.17	0.39	0.00	0.02	0.14	0.00	0.01	0.17	
			60%	0.21	0.37	0.47	0.11	0.28	0.48	0.01	0.03	0.11	0.04	0.13	0.20	
	Strategy relaxation		90%	0.00	0.00	0.02	0.00	0.03	0.23	0.00	0.00	0.00	0.00	0.02	0.11	
	Vaccine	Vaccine cc	75%	0.00	0.01	0.00	0.04	0.12	0.32	0.00	0.00	0.00	0.01	0.07	0.15	
			60%	0.00	0.02	0.04	0.10	0.24	0.28	0.00	0.00	0.00	0.04	0.06	0.14	
R03.75	No strategy relaxation		90%	0.26	0.43	0.68	0.05	0.05	0.28	0.02	0.08	0.33	0.00	0.01	0.30	
		Vaccine co	75%	0.35	0.52	0.67	0.07	0.12	0.28	0.05	0.15	0.42	0.01	0.13	0.36	
			60%	0.59	0.62	0.71	0.10	0.25	0.37	0.16	0.26	0.52	0.10	0.34	0.53	
	Strategy relaxation		90%	0.04	0.06	0.23	0.01	0.04	0.30	0.00	0.00	0.13	0.00	0.04	0.30	
		Vaccine co	75%	0.09	0.12	0.32	0.06	0.12	0.21	0.00	0.06	0.23	0.02	0.12	0.40	
			60%	0.14	0.28	0.35	0.12	0.13	0.36	0.02	0.06	0.41	0.09	0.24	0.50	

16



- Social restrictions (including lockdowns) are essential to control COVID-19
- But there are likely unintended health consequences
- Moreover, the 'right' balance of strategy and lockdowns (given unintended health consequences) will likely vary as vaccine coverage increases
- We undertook an international literature review to determine which diseases (and risk factors) are associated with lockdowns:
 - Increase: depression, anxiety, self-harm (but not suicide), intimate partner violence
 - Decrease: road traffic injury, physical activity
- Blue ones include in web-tool now, others (and uncertainty analyses) coming soon

Net-health impacts for my scenario at COVID-19 Pandemics Trade-off web-tool

Health outcomes by strategy

Change in HALYs relative to the 'No COVID-19' scenario, for each strategy.

Strategy

Uptake = 75%; Relax = on; VE (trans) = 90%; R0 = 3.75

We encourage you to make your own interpretations ... but here are ours (so far)

- The likelihood of future uncontrolled outbreaks is unsurprisingly considerably greater if we adopt a loose suppression approach.
- The risk varies **markedly** with the R0 of the circulating variant. Therefore, the greater infectivity of new variants is of grave concern until vaccine coverage is high for a vaccine that reduces transmission.
 - Gives one pause to think given Brisbane situation right now with UK variant that probably has R0 somewhere around our 3.75 scenario
- An ongoing aggressive elimination strategy (as per NZ and Vic in 2020) will not be optimal as vaccine coverage increases
- **<u>But</u>** we need to minimize viral incursions from overseas until vaccine coverage is high:
 - Again, thinking of Brisbane now
 - we will explore border options more explicitly in the next month (and update the web-tool).
- If children are not vaccinated, an Australian population strongly resilient to incursions of the virus is unlikely. As shown by others (e.g. Zachreson, Change, Cliff and Prokopenko (2021)) herd immunity will be hard – if not impossible – to achieve without vaccinating children.

We will be evolving this web-tool to:

- Include specific options for border opening (it is currently part of 'model uncertainty')
- Build in uncertainty about the health impacts
- Add in net health expenditure and GDP costs for each scenario
- Include a cost-effectiveness tool to work out what is an 'optimal' scenario to pursue
- Updating inputs to the model as out evidence-base globally and in Australasia improves

COVID-19 Pandemic Tradeoffs: Launch of web-tool

Web-tool: https://populationinterventions.science.unimelb.edu.au/pandemic-trade-offs/

- this power point there too
- here you will find user guide too

Summary up at The Pursuit about now: https://pursuit.unimelb.edu.au/

And you can go to the Population Interventions Unit website:

- <u>https://mspgh.unimelb.edu.au/research-groups/centre-for-epidemiology-and-biostatistics-research/population-interventions</u>